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During the COVID-19 pandemic, countries and states/provinces have tried to 
keep their territories safe by isolating themselves from others by limiting non-
essential travel and imposing mandatory quarantines for travelers. While large-
scale quarantine has been the most successful short-term policy, it is 
unsustainable over long periods as it exerts enormous economic costs. Countries 
which have been able to partially control the spread of COVID-19  are thinking 
about policies to reopen businesses. However, pandemic experts strongly warn 
against reopening too soon. Thus, it is urgent to consider a flexible quarantine 
policy that balances these demands. Here, we have designed a multi-level 
quarantine process based on the mobility patterns of individuals and the severity 
of COVID-19 contagion in different areas. By identifying the natural boundaries of 
social mobility, policy makers can impose travel restrictions that are minimally 
disruptive of social and economic activity. The dynamics of social fragmentation 
during the COVID-19 outbreak are analyzed by applying the Louvain method with 
modularity optimization to the weekly mobility networks. In a multi-scale 
community detection process, using the locations of confirmed cases, natural 
break points as well as high risk areas for contagion are identified. At the smaller 
scales, for communities with a higher number of confirmed cases, contact 
tracing and associated quarantine policies is increasingly important and can be 
informed by the community structure. 

Introduction 

The emergence and global spread of the 2019 novel coronavirus (SARS-CoV-2 or 
COVID-19) has resulted in a global health emergency. With a high level of observed 
contagiousness [1] and a lack of proven medical treatment, the situation is becoming 
increasingly dire as the virus moves across the globe. Public health stakeholders are 
racing to find adequate methods for intervention as the outbreak spreads [2,3]. It is 
challenging to determine where the next outbreak will be and how to prevent and 
control it. Analyzing data about positive tests and location of current patients plays a 
critical role in public health agencies response [4]. In most cases, quarantine policies 
and data related to the COVID-19 outbreak are based on arbitrary borders such as 
state or county boundary lines [5-10]. While these boundaries may serve constituents 
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well in meeting certain social needs of their communities (e.g. infrastructure, taxes), 
this is not the most effective way to analyze data for anticipating disease outbreaks. 
For the purposes of examining the spread of COVID-19 in the US, mobility patterns can 
be characterized in three overarching concepts: short distance (grocery shopping, 
walking), medium distance (travel for work or fun), and long distance (travel to other 
cities for vacation, visiting families). Travel can be thought of as occurring in “bubbles” 
of progressively larger geographical scales. National travel bubbles includes the 
common movement of individuals traveling far from one region of the country to 
another. This type of mobility pattern was quickly identified as risky and attempts to 
limit this type of travel within the country were put in place. For example, in the very 
beginning of the North American outbreak in March, 2020, a group of university 
undergraduate students from around the country gathered on Florida beaches for the 
traditional spring break. During this gathering, local transmission of COVID-19 was 
detected and the spread of the disease to various other regions of the country 
occurred [11]. Soon after, most universities were closed and airline travel was reduced. 
Local travel bubbles, on the other hand, include regions with close proximity where 
there are more frequent mobility patterns. Local bubbles are prevalent in places such 
as the Northeast Megalopolis [12,13], where there are numerous cities and 
communities all continuously connected to one another. In this region, many individuals 
may live in one city/state (e.g. Philadelphia), work in another (New York City), and 
vacation in another (New Jersey coast). While these regions are separated by multiple 
administrative boundaries, they could still be considered to be in the same bubble. 
In this paper, we utilize a well-known community detection algorithm to analyze the 
dynamics of movement behaviors and study the fragmentation patterns from the 
weekly aggregated mobility networks in the US. The recent availability of large-scale 
datasets derived from bank transaction records, landline, mobile and social media has 
greatly improved our ability to study social systems [15-17]. Geo-located data sources 
enable direct observation of social interactions and collective behaviors with 
unprecedented detail. Networks of human mobility [18-20] have revealed the existence 
of geo-located communities, or patches that exist at multiple scales from town to city, 
state, and national scales [21]. People in these patches have similar movement 
patterns and, in a self-organized manner, mostly do not cross the borders of their 
communities. Borders of patches are subject to vary by changes in the mobility 
preferences. The applied quarantine policies and lockdowns on large scales have 
changed the mobility patterns over the past months. Studying the changes and 
fragmentation patterns allow us to quantify the effectiveness of the policies and define 
the risk of the areas based on the mobility of individuals. 


Methods and Materials  
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Data: 
COVID-19 datasets: We use daily time series data from Johns Hopkins University 
COVID-19 Data Repository. These datasets provide cumulative counts for confirmed 
cases at the level of counties for the US. By adding the number of active confirmed 
COVID-19 cases to the map, we can define risk exposure for the communities.
Mobility datasets: We are collecting multiple data sets to extract the mobility networks 
in the US. In March 2020, technology companies that gather geo-located information 
on individuals started sharing anonymized mobility data to help researchers stop the 
spread of COVID-19. Each of these data sets covers aspects of an individual’s 
movements. We combine mobility datasets from SafeGraph, Twitter, and Facebook. 
SafeGraph dataset: The original data comes in CSV format, grouped by days. The file 
sizes range from 1 to 2.5 GB. Each file describes individual census blocks and lists 
links with weights (number of links) to other census blocks that occurred on a specific 
day. We first separate all these relationships and describe them as individual objects. 
Each relationship has a source, a target, the date, and weight of interaction. Daily 
dataframes are combined into weekly dataframes, grouped and their relationships are 
summed. Each census block in each relationship is augmented with central points 
derived from groups of census blocks that make up a census block group.
Mobility Network: In the mobility network, nodes represent a lattice with cells overlaid 
on a map of the US. Here, we consider the census block groups as the nodes of our 
network. Edges represent the movement of an individual from one location (node) to 
another one. Here, edges’ weight represents the number of people who travel between 
the two census block groups. This network aggregates the heterogeneities of human 
mobilities in a large-scale representation of social collective behaviors [22].
Community Detection Algorithm: We analyze social fragmentation by applying the 
Louvain method [23] with modularity optimization [24] to the mobility network. 
Communities refer to the regions in which nodes are more connected to each other 
than the rest of the network. In the Louvain method, in an iterative process, nodes 
move to the neighboring communities and join them to maximize modularity (M). 
Modularity is a scalar value -1<M<1 that quantifies how distant the number of edges 
inside a community is from those of a random distribution. Values closer to 1 represent 
better detected communities. Due to the existence of multiple local minima in the 
Louvain algorithm, some variation in the assignment of nodes may occur between 
algorithm runs [24, 25]. To quantify the stability of detected communities and identify 
areas in which communities overlap with each other, we generate an ensemble of 
multiple realizations and analyze the borders of patches in all the realizations [21].


Results and Discussion:  

After the first cases came to the US through international travel, the spread of 
COVID-19 occurred rapidly through patients with or without symptoms at the time of 
transmission. COVID-19 has an incubation period that typically varies between 1 and 
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14 days. Movement of asymptomatic individuals in public increases the risk of the 
disease in the areas they visit. The greater the number of infected people, the higher 
the risk of spreading COVID-19. Unfortunately, due to the delays in applying 
preventative policies across the US, many areas have seen a large number of cases. By 
tracking the location of recent active cases, we can define the risk exposure for various 
areas. While doing the analysis in lower resolutions, country or province/state scale, 
can provide an aggregate view of the world situation, doing the analysis this way will 
mean the loss of many important details and information. For example, a state may 
appear be in a good position when it comes to COVID-19, but when we zoom into the 
state, we may see that there is high risk in a particular area. Alternatively even in states 
with a high number of cases, some areas may have none. The higher the resolution we 
can provide, the better we can define the local risk levels. Figure 1 shows the severity 
of the pandemic at the county level for the US. If a county does not have any cases it is 
shown in dark green. There is a shift from dark green to dark red showing the highest 
risk of exposure in the counties with over 20,000 cases (see the legend of the figure). 
Green areas are the safest areas in the past 14 days. Metropolitan and urban areas are 
the most risky areas as the population density in those areas is greater.


Figure 1: COIVD-19 cases in the counties of the US in 14 days ending 6/21/2020.


To apply the preventive policies more carefully, it is important to define the 
geographical patches based on actual mobility of individuals. During the global spread 
of COVID-19, many countries have isolated themselves from high risk countries by 
closing international flights and land borders. Inside the countries, including in the US, 
state governments closed public areas (e.g. work places, universities, schools and 
shopping centers), and asked people to wear masks. At the beginning of the outbreak, 
people were also asked to abstain from going outside unless for essential or 
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emergency needs. These actions helped to reduce the unnecessary movements and 
the spread of the disease. To see the impact of these policies, in Figure 2, we 
compared the mobility networks of the US on January 19-26 and April 5-11, and 
applied the Louvian algorithm to extract the fragmentation pattern. Nodes with the 
same color belong to the same community. 


Figure 2: First level of the communities from the mobility network in the US at January 19-26 (upper 
panel) and April 5-11 (bottom panel). 


Geo-communities are important because they indicate where there is more travel 
between geographic areas, and identify regions and boundaries where limiting travel is 
easier. Early in the outbreak travelers were limited from the epicenter in NY to other 
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states. Recent regulations seek to regulate travel from the current outbreak areas into 
the NY, NJ and CT area [26]. As shown in the figure, some of the larger communities in 
January are split into smaller communities representing the changes in mobility. For 
example, California, with two main communities including Los Angeles and San 
Francisco, was divided into four communities in April. Communities in Florida are also 
divided into smaller communities. This same phenomenon happened for New York and 
New Jersey. These communities are among the most infected areas in the US.

Figure 3: First and second levels of communities in the US during April 5-11. Colors show first level 
communities. Black lines show finer scale communities. Upper panel shows state boundaries in yellow. 

Bottom panel shows county boundaries in yellow. 
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 Figure 4: First and second levels of communities in the US at April 5-11 with number of COVID cases at 
the county scale (gray circles at the centroid of the counties). 


In Figure 3, we show the communities at two different scales on April 5-11. Larger 
communities are shown by different colors and sub-communities are separated from 
each other with black lines. The second level reveals the substructure of the 
communities inside each of the larger communities, exposing the mobility patterns in 
more detail. In the upper panel, state borders are shown by yellow color and in the 
bottom panel, county borders are shown. From these two panels, it is clear that in 
some areas community borders align with the social border but in other areas they 
deviate significantly. 
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In Figure 4, we add indicators of the number of COVID-19 cases on top of the 
communities map. COVID-19 cases at the county level are placed in the centroid of the 
counties. While all large communities are highly infected, some of the sub-communities 
have much less infected areas, demonstrating they are safer places and have a better 
potential to reopen earlier than the higher risk areas. 


By zooming into the map (see Figure 5(a)), we observe five interesting facts:
• Areas with no mobility data: There are some urban areas that do not share any 

mobility data, like a Native American community in New York state [27], see 
Figure 5(b).


• Isolated communities: Some parts of a community are geographically 
disconnected from the original community. This occurs for university areas and 
vacation areas for larger cities. 

• Universities: New York State is the home of many universities. These 

universities attract people from many different geo-clusters. In Figure 5(c), 
we see the example of Cornell University and SUNY Cortland, two 
Universities located in central New York State that are sub-communities 
for the New York City community. This corresponds with a 2014 
investigation [28] which estimated that 65% of all students at Cornell from 
New York State came from that region of the state. 


• Vacationers: There are vacation spots that individuals from metropolitan 
regions of one community go to that are in the middle of other 
communities. These regions are known for their nice outdoor space and 
somewhat close proximity to the city they are connected to. This 
phenomenon creates isolated communities in the middle of other 
communities. Multiple reports have mentioned this issue [29, 30]. In New 
York City, the Catskill Mountains are one of these escapes, Figure 5(d), 
while for Philadelphia the Poconos serves the same purpose, Figure 5(e).


• Specific sub-communities within other sub-communities: All around the US, 
there are some areas in which people mostly interact with each other rather than 
their nearby urban areas. University campuses are good examples of such sub-
communities. As shown in Figure 5(f), within the community of upstate/western 
New York there are specific sub-communities with connection to university 
campuses. On the left side of the figure, the smaller shape south of Rochester is 
Rochester Institute of Technology, while on the right side of the figure has 2 
smaller areas in Syracuse, both associated with Syracuse University. These 
universities are large and attract many students from the upstate/western New 
York region.


• Communities that cross borders: Examples include the area of Philadelphia and 
southern New Jersey, see Figure 5(g). The light purple region highlights the 
Philadelphia cluster. This geo-cluster includes a multi-state region in north 
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eastern Maryland, northern Delaware, southern New Jersey, and south eastern 
Pennsylvania. The southern part of the Jersey Shore is a popular travel 
destination for people from Philadelphia, and the areas in Delaware and 
Maryland appear to be extensions of the greater Philadelphia area. 


Figure 5: Zoom into the northeast of the US.


• Sub-communities in City areas: Racial and income differences, city 
infrastructure and transportation can be reasons for community formation in city 
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areas. In New York City, these communities are shown by light green in Figure 
5(a). Brooklyn and Queens have defined sub-communities, see Figure 5(h), that 
are necessary to investigate. Sub-community 1 includes areas of Queens (Long 
Island City, Astoria, Sunnyside, Woodside, Jackson Heights, Elmhurst,  Corona). 
Sub-community 2 includes parts of northern Brooklyn (Williamsburg, 
Greenpoint, Maspeth, Middle Village, Rego Park, Forest Hills, Bushwick, 
Ridgewood, Glendale). Sub-community 3 includes central Brooklyn (Clinton Hill, 
Bedford-Stuyvesant, Fort Greene, Prospect Heights, Crown Heights, Flatbush, 
and Canarsie). Sub-community 4 includes areas around Prospect Park (Park 
Slope, Greenwood Heights, Kensington, Windsor Terrace, Prospect Lefferts 
Gardens). The public transportation that supports them is different for each area 
(within Brooklyn division as well). Prospect Park area of Brooklyn is the most 
wealthy (#4, smallest subsection). The border between #4 and #3 on the map is 
basically the wealth divide [31]. The racial divide between #3 and #4 is striking 
on this map as well [32].
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